The yeast HRS1 gene encodes a polyglutamine-rich nuclear protein required for spontaneous and hpr1-induced deletions between direct repeats.

نویسندگان

  • H Santos-Rosa
  • B Clever
  • W D Heyer
  • A Aguilera
چکیده

The hrs1-1 mutation was isolated as an extragenic suppressor of the hyperrecombination phenotype of hpr1 delta cells. We have cloned, sequenced and deleted from the genome the HRS1 gene. The DNA sequence of the HRS1 gene reveals that it is identical to PGD1, a gene with no reported function, and that the Hrs1p protein contains polyglutamine stretches typically found in transcription factors. We have purified a His(6) tagged version of Hrs1p protein from E. coli and have obtained specific anti-Hrs1p polyclonal antibodies. We show that Hrs1p is a 49-kD nuclear protein, as determined by indirect immunofluorescence microscopy and Western blot analysis. The hrs1 delta null mutation reduces the frequency of deletions in wild-type and hpr1 delta backgrounds sevenfold below wild-type and rad52 levels. Furthermore, hrs1 delta cells show reduced induction of the GAL1,10 promoter relative to wild-type cells. Our results suggest that Hrs1p is required for the formation of deletions between direct repeats and that it may function in gene expression. This suggests a connection between gene expression and direct repeat recombination. In this context, we discuss the possible roles of Hrs1p and Hpr1p in initiation of direct-repeat recombination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutations in the yeast SRB2 general transcription factor suppress hpr1-induced recombination and show defects in DNA repair.

We have obtained genetic and molecular evidence that the hrs2-1 mutation, isolated as a suppressor of the hyperrecombination phenotype of hpr1 delta, is in the SRB2 gene, which encodes a component of the RNA polII holoenzyme. A newly constructed srb2 delta allele restores the wild-type levels of deletions in hpr1 delta cells, indicating that the lack of a functional SRB2 transcription factor su...

متن کامل

Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans.

Expansion of polyglutamine repeats in several unrelated proteins causes neurodegenerative diseases with distinct but related pathologies. To provide a model system for investigating common pathogenic features, we have examined the behavior of polyglutamine expansions expressed in Caenorhabditis elegans. The expression of polyglutamine repeats as green fluorescent protein (GFP)-fusion proteins i...

متن کامل

A novel yeast gene, THO2, is involved in RNA pol II transcription and provides new evidence for transcriptional elongation-associated recombination.

We have identified two novel yeast genes, THO1 and THO2, that partially suppress the transcription defects of hpr1Delta mutants by overexpression. We show by in vivo transcriptional and recombinational analysis of tho2Delta cells that THO2 plays a role in RNA polymerase II (RNA pol II)-dependent transcription and is required for the stability of DNA repeats, as previously shown for HPR1. The th...

متن کامل

HYPER RECOMBINATION1 of the THO/TREX Complex Plays a Role in Controlling Transcription of the REVERSION-TO-ETHYLENE SENSITIVITY1 Gene in Arabidopsis

Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1) represses ethylene hormone responses by promoting ethylene receptor ETHYLENE RESPONSE1 (ETR1) signaling, which negatively regulates ethylene responses. To investigate the regulation of RTE1, we performed a genetic screening for mutations that suppress ethylene insensitivity conferred by RTE1 overexpression in Arabidopsis. We isolated HYPER R...

متن کامل

Huntingtin toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like protein Rnq1

The cause of Huntington's disease is expansion of polyglutamine (polyQ) domain in huntingtin, which makes this protein both neurotoxic and aggregation prone. Here we developed the first yeast model, which establishes a direct link between aggregation of expanded polyQ domain and its cytotoxicity. Our data indicated that deficiencies in molecular chaperones Sis1 and Hsp104 inhibited seeding of p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 142 3  شماره 

صفحات  -

تاریخ انتشار 1996